Chapter 3 Trees |
Section 1 Trees |
- #Leaves
- 1 + (arity - 1)*(# internal nodes)
- Balanced Tree
- Height = ⌈Log arity #Leaves⌉
|
Section 2 Spanning Trees |
- Spanning Tree(G)
- Subgraph(G) that's a tree w/ all of G's V's
|
Chapter 4 Networks |
Section 1 Shortest Path |
- Method
- Dijkstra. SPT(A)≠SPT(B)
|
Section 2 Minimum Spanning Trees |
- Kruskel's Method
- Choose the cheapest edge not in the tree
- Prim's Method
- Choose the cheapest edge connected to the tree
|
Chapter 5 Counting |
Section 2 Simple |
- P(n,r)
- r-permutation=n!/(n-r)!
- C(n,r)
- r-combination=P(n,r)/r!=(ⁿᵣ)
|
Section 3 Repetition |
- P(n;r₁,...,rm)
- # of dist of n obj if ∃ rn of type n
- ((ⁿᵣ))
- C(r+n-1,r)
|
Section 4 Distributions |
- ((ⁿᵣ))
-
- # of ways to select r obj w/ rep from n dif types
- # of ways to distribute r id objects into n dif boxes
- # of nonnegative integer solutions to x₁+...+xn=r
|
| Arrangement | Combination |
No repetition | P(n,r) | (ⁿᵣ)FermionCommitteeCards |
Unlimited repetition | nr | ((ⁿᵣ)) = BosonNonconsDice |
Restricted repetition | P(n;r₁,...,rm) Dorms. Mississippi | 1 |
|
Chapter 6 |
Section 1 Generating Functions |
- ar
- The # of ways to select r objects.
|
Section 2 Calculating |
(1-xm+1)/(1-x) | 1/(1-x) | 1/(1-x)ⁿ |
1+x+...+xm | Σᵣ xᴿ | Σᵣ ((ⁿᵣ))xᴿ |
|
Section 3 Partitions |
- g(x)
- 1/(1-x)(1-x²)(1-x³)...
|
Section 4 Exponentials |
- aᵣ
- Coefficient of xᴿ/r!
|
Section 5 Summation |
- ₒΣᴿai
- h*(x) = h(x)/(1-x)
|
Chapter 7 |
Section 1 Recurrence |
- an
- f(a,n)
|
Section 2 Divide & Conquer |
An = C * An/k + f(n)
c | c=1 | c=k | c>2 | c=2 |
f(n) | d | d | dn | dn |
An | d⌈logkn⌉ + A | A·n - d/(k-1) | A·nlogkc+nkd/(k-c) | dn(⌈logkn⌉ + A) |
|
Section 3 Linear: Homogen. |
- Substitute
- an = αⁿ
|
Section 4 Linear: Inhomogen. |
- General Solution
- Homogeneous + Particular
|
Section 5 Generating Function |
- g(x)
- Σanxⁿ
|
Chapter 8 |
Section 2 Formula |
- Theorem
- N(A̅1A̅2...A̅n) = N - S1 + S2 ... (-1)kSn
- Corollary
- N = S1 - S2 + S3 - ...
|